What is RETHYMIC?

RETHYMIC is a regenerative tissue-based therapy that is indicated for immune reconstitution in pediatric patients with congenital athymia. RETHYMIC is not for use in patients who have been diagnosed with severe combined immunodeficiency (SCID).

RETHYMIC is engineered human thymus tissue that is implanted in the thigh muscle to help a child with congenital athymia build a functioning immune system to reduce the number of potentially life-threatening infections. In clinical trials, RETHYMIC demonstrated a survival benefit in some children with congenital athymia. RETHYMIC is a regenerative tissue therapy that was developed to address the ultra-rare condition of congenital athymia, for which, previously, there were no existing treatment options. RETHYMIC has a Regenerative Medicine Advanced Therapy (RMAT) designation from the FDA and it is the first and only FDA-approved regenerative therapy for pediatric congenital athymia.

How does RETHYMIC Work?

RETHYMIC is intended to reconstitute immune system function in patients with congenital athymia. The stem cells in the bone marrow migrate to RETHYMIC. Over time, these stem cells in RETHYMIC begin to develop into infection-fighting T cells. Immune reconstitution sufficient to protect from infection is unlikely to develop prior to 6 to 12 months after treatment with RETHYMIC. Once developed, they leave the RETHYMIC processed tissue and enter the bloodstream where they have the ability to interact with other cells.

How Is RETHYMIC Made?

When an infant has cardiac surgery, the surgeon needs to remove some thymus tissue to access the heart. With consent of the infant donor’s parents or guardians, the thymus tissue from pediatric cardiac surgeries is donated for the engineering process to make RETHYMIC for use in patients diagnosed with congenital athymia. The manufacturing is a precisely timed 12- to 21-day engineering process in a facility dedicated to making RETHYMIC.

How is RETHYMIC Administered?

RETHYMIC is surgically implanted in the thigh muscle of a child with pediatric congenital athymia. Children are put under general anesthesia and the procedure is performed in an in-patient setting. A surgeon implants the tissue in the child’s thigh muscle-a rich source of blood that enables the tissue to get the oxygen and nutrients it needs. RETHYMIC is implanted in one or both thigh muscles. The skin incision is typically approximately 5 cm (2 in) in length.

Clinical Trials

The safety and efficacy of RETHYMIC was evaluated in 105 patients across 10 clinical trials.

Learn More

After Treatment

What to expect after treatment.

Learn More

How to Access

RETHYMIC is currently available at one location in Durham, North Carolina. Here you will find information on accessing RETHYMIC

Learn More

Supporting the Treatment Journey

Enzyvant CONNECT is here to provide education, resources and support throughout your child’s treatment journey.

ENROLL Your PatientVisit EnzyvantConnect.com

Not an actual patient.

Indication and Important Safety Information
IMPORTANT SAFETY INFORMATION

Immune reconstitution sufficient to protect from infection is unlikely to develop prior to 6-12 months after treatment with RETHYMIC. Given the immunocompromised condition of athymic patients, follow infection control measures until the development of thymic function is established as measured through flow cytometry. Monitor patients closely for signs of infection including fever. If a fever develops, assess the patient by blood and other cultures and treat with antimicrobials as clinically indicated. Patients should be maintained on immunoglobulin replacement therapy until specified criteria are met, and two months after stopping, IgG trough level should be checked. Prior to and after treatment with RETHYMIC, patients should be maintained on Pneumocystis jiroveci pneumonia prophylaxis until specified criteria are met.

RETHYMIC may cause or exacerbate pre-existing graft versus host disease (GVHD). Monitor and treat patients at risk for the development of GVHD. Risk factors for GVHD include atypical complete DiGeorge anomaly phenotype, prior hematopoietic cell transplantation (HCT) and maternal engraftment. GVHD may manifest as fever, rash, lymphadenopathy, elevated bilirubin and liver enzymes, enteritis, and/or diarrhea.

Autoimmune-related adverse events occurred in patients treated with RETHYMIC. These events included: thrombocytopenia, neutropenia, proteinuria, hemolytic anemia, alopecia, hypothyroidism, autoimmune hepatitis, autoimmune arthritis, transverse myelitis, albinism, hyperthyroidism, and ovarian failure. Monitor for the development of autoimmune disorders, including complete blood counts with differential, liver enzymes, serum creatinine, urinalysis, and thyroid function.

Pre-existing renal impairment is a risk factor for death.

In the clinical studies of RETHYMIC, 4 out of 4 patients with pre-existing cytomegalovirus infection died. The benefits/risks of treatment should be considered prior to treating patients with pre-existing CMV infection.

Because of the underlying immune deficiency, patients who receive RETHYMIC may be at risk of developing post-treatment lymphoproliferative disorder. Patients should be monitored for the development of lymphoproliferative disorder.

Transmission of infectious disease may occur because RETHYMIC is derived from human tissue and because product manufacturing includes porcine- and bovine-derived reagents.

Immunizations should not be administered in patients who have received RETHYMIC until immune-function criteria have been met.

All patients should be screened for anti-HLA antibodies prior to receiving RETHYMIC. Patients testing positive for anti-HLA antibodies should receive RETHYMIC from a donor who does not express those HLA alleles. HLA matching is required in patients who have received a prior HCT or a solid organ transplant. Patients who have received a prior HCT are at increased risk of developing GVHD after RETHYMIC if the HCT donor did not fully match the recipient.

Of the 105 patients in clinical studies, 29 patients died, including 23 deaths in the first year (< 365 days) after implantation.

The most common (>10%) adverse events related to RETHYMIC included: hypertension, cytokine release syndrome, rash, hypomagnesemia, renal impairment/failure, thrombocytopenia, and graft versus host disease.

To report suspected adverse reactions, please contact the FDA at 1-800-FDA-1088 or www.fda.gov/safety/medwatch.

INDICATION

RETHYMIC® (allogeneic processed thymus tissue–agdc) is indicated for immune reconstitution in pediatric patients with congenital athymia.

Limitations of Use:
RETHYMIC is not indicated for the treatment of patients with severe combined immunodeficiency (SCID).

REFERENCES

1. Collins C, Sharpe E, Silber A, Kulke S, Hsieh EWY. Congenital athymia: genetic etiologies, clinical manifestations, diagnosis, and treatment. J Clin Immunol. 2021;41(5):881-895. doi.org/10.1007/s10875-021-01059-7

2. Data on file, Enzyvant.

3. Markert ML, Gupton SE, McCarthy EA. Experience with cultured thymus tissue in 105 children. J Allergy Clin Immunol. Published online August 3, 2021. doi:10.1016/j.jaci.2021.06.028

4. Hsieh EWY, Kim-Chang JJ, Kulke S, Silber A, O’Hara M, Collins C. Defining the clinical, emotional, social, and financial burden of congenital athymia. Adv Ther. 2021;38(8):4271-4288. doi.org/10.1007/s12325-021-01820-9

5. RETHYMIC [package insert]. Cambridge, MA: Enzyvant Therapeutics, Inc; 2021.

6. Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm ER, eds. Stiehm’s Immune Deficiencies. 2nd ed. New York, NY: Elsevier; 2020:357-379.

7. Gupton SE, McCarthy EA, Markert ML. Care of children with DiGeorge before and after cultured thymus tissue implantation. J Clin Immunol. 2021;41(5):896-905. doi.org/10.1007/s10875-021-01044-0

8. Markert ML, Devlin BH, Alexieff MJ, et al. Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood. 2007;109(10):4539-4547.

9. Markert ML, McCarthy EA, Gupton SE, Lim AP. Cultured thymus tissue transplantation. In: Sullivan KE, Stiehm ER, eds. Stiehm's Immune Deficiencies. 2nd ed.: Academic Press; 2020:1229-1239.

Indication and Important Safety Information
IMPORTANT SAFETY INFORMATION

Immune reconstitution sufficient to protect from infection is unlikely to develop prior to 6-12 months after treatment with RETHYMIC. Given the immunocompromised condition of athymic patients, follow infection control measures until the development of thymic function is established as measured through flow cytometry. Monitor patients closely for signs of infection including fever. If a fever develops, assess the patient by blood and other cultures and treat with antimicrobials as clinically indicated. Patients should be maintained on immunoglobulin replacement therapy until specified criteria are met, and two months after stopping, IgG trough level should be checked. Prior to and after treatment with RETHYMIC, patients should be maintained on Pneumocystis jiroveci pneumonia prophylaxis until specified criteria are met.

RETHYMIC may cause or exacerbate pre-existing graft versus host disease (GVHD). Monitor and treat patients at risk for the development of GVHD. Risk factors for GVHD include atypical complete DiGeorge anomaly phenotype, prior hematopoietic cell transplantation (HCT) and maternal engraftment. GVHD may manifest as fever, rash, lymphadenopathy, elevated bilirubin and liver enzymes, enteritis, and/or diarrhea.

Autoimmune-related adverse events occurred in patients treated with RETHYMIC. These events included: thrombocytopenia, neutropenia, proteinuria, hemolytic anemia, alopecia, hypothyroidism, autoimmune hepatitis, autoimmune arthritis, transverse myelitis, albinism, hyperthyroidism, and ovarian failure. Monitor for the development of autoimmune disorders, including complete blood counts with differential, liver enzymes, serum creatinine, urinalysis, and thyroid function.

Pre-existing renal impairment is a risk factor for death.

In the clinical studies of RETHYMIC, 4 out of 4 patients with pre-existing cytomegalovirus infection died. The benefits/risks of treatment should be considered prior to treating patients with pre-existing CMV infection.

Because of the underlying immune deficiency, patients who receive RETHYMIC may be at risk of developing post-treatment lymphoproliferative disorder. Patients should be monitored for the development of lymphoproliferative disorder.

Transmission of infectious disease may occur because RETHYMIC is derived from human tissue and because product manufacturing includes porcine- and bovine-derived reagents.

Immunizations should not be administered in patients who have received RETHYMIC until immune-function criteria have been met.

All patients should be screened for anti-HLA antibodies prior to receiving RETHYMIC. Patients testing positive for anti-HLA antibodies should receive RETHYMIC from a donor who does not express those HLA alleles. HLA matching is required in patients who have received a prior HCT or a solid organ transplant. Patients who have received a prior HCT are at increased risk of developing GVHD after RETHYMIC if the HCT donor did not fully match the recipient.

Of the 105 patients in clinical studies, 29 patients died, including 23 deaths in the first year (< 365 days) after implantation.

The most common (>10%) adverse events related to RETHYMIC included: hypertension, cytokine release syndrome, rash, hypomagnesemia, renal impairment/failure, thrombocytopenia, and graft versus host disease.

To report suspected adverse reactions, please contact the FDA at 1-800-FDA-1088 or www.fda.gov/safety/medwatch.

INDICATION

RETHYMIC® (allogeneic processed thymus tissue–agdc) is indicated for immune reconstitution in pediatric patients with congenital athymia.

Limitations of Use:
RETHYMIC is not indicated for the treatment of patients with severe combined immunodeficiency (SCID).

REFERENCES

1. Collins C, Sharpe E, Silber A, Kulke S, Hsieh EWY. Congenital athymia: genetic etiologies, clinical manifestations, diagnosis, and treatment. J Clin Immunol. 2021;41(5):881-895. doi.org/10.1007/s10875-021-01059-7

2. Data on file, Enzyvant.

3. Markert ML, Gupton SE, McCarthy EA. Experience with cultured thymus tissue in 105 children. J Allergy Clin Immunol. Published online August 3, 2021. doi:10.1016/j.jaci.2021.06.028

4. Hsieh EWY, Kim-Chang JJ, Kulke S, Silber A, O’Hara M, Collins C. Defining the clinical, emotional, social, and financial burden of congenital athymia. Adv Ther. 2021;38(8):4271-4288. doi.org/10.1007/s12325-021-01820-9

5. RETHYMIC [package insert]. Cambridge, MA: Enzyvant Therapeutics, Inc; 2021.

6. Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm ER, eds. Stiehm’s Immune Deficiencies. 2nd ed. New York, NY: Elsevier; 2020:357-379.

7. Gupton SE, McCarthy EA, Markert ML. Care of children with DiGeorge before and after cultured thymus tissue implantation. J Clin Immunol. 2021;41(5):896-905. doi.org/10.1007/s10875-021-01044-0

8. Markert ML, Devlin BH, Alexieff MJ, et al. Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood. 2007;109(10):4539-4547.

9. Markert ML, McCarthy EA, Gupton SE, Lim AP. Cultured thymus tissue transplantation. In: Sullivan KE, Stiehm ER, eds. Stiehm's Immune Deficiencies. 2nd ed.: Academic Press; 2020:1229-1239.